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Abstract—We design and implement scalable distributed-
memory algorithms for maximum cardinality matching in bi-
partite graphs. Computing matchings on distributed-memory
supercomputers is challenged by the irregular and asynchronous
data access patterns in graph searches and the difficulty in
processing long paths passing through multiple processors. We
address these challenges by developing an algorithm based on
matrix algebra. We employ bulk-synchronous matrix algebraic
modules to implement graph searches, and Remote Memory
Access (RMA) operations to map asynchronous light-weight
graph accesses. On real matrices, our algorithm achieves up
to 18x speedup when we go from 24 cores to 2048 cores of a
Cray XC30 supercomputer. Even higher speedups are obtained
on larger synthetically generated graphs where our algorithms
show good scaling on up to 12,000 cores.

I. INTRODUCTION

Matching is a celebrated problem in combinatorial optimiza-
tion with many applications [1]. A subset of the edges of a
graph is said to be a matching if no two edges are incident
to the same vertex. Finding matchings in a graph is often
used as a preprocessing step for solving sparse systems of
linear equations [2]. The increasing size of the sparse systems
encouraged development of many distributed-memory solvers
as large-scale problems do not fit into a single node. The lack
of distributed-memory matching algorithms and implementa-
tions left the preprocessing step as a bottleneck. The current
state of the practice [3], [4] involves gathering the data into a
single page memory node to run the serial (or multithreaded)
matching code, followed by a redistribution of the data for
the rest of the solver to complete. The gathering can be
impossible due to limited single node memory. Even when the
problem fits into a single node, the gathering incurs expensive
communication (discussed in Section VI-E) and subsequent
single node execution of the matching algorithm creates a
scalability bottleneck in Amdahl’s terms due to significantly
reduced concurrency within a single node. Therefore, scalable
distributed-memory algorithms are needed to compute match-
ings in large distributed graphs.

This paper solely focuses on maximum cardinality match-
ings (MCM) in a bipartite graph, G=(R,C,E), where the
vertex set V is partitioned into two disjoint sets R and C,
such that every edge connects a vertex in R to a vertex in C.
In this paper, we denote the number of vertices by n and the
number of edges by m. Furthermore, |R| and |C| are denoted
by n1 and n2, respectively where n1+n2=n. MCM problem

in bipartite graphs is known to be in random NC [5], meaning
that a randomized parallel algorithm solves it in polylog time
using number of processors that are polynomial-bounded in
problem size. However, such algorithms often need excessive
numbers of processors (n6.5 in the aforementioned paper and
m3 using a deterministic interior-point method [6], albeit not
in polylog time), and hence not work efficient. Moreover, none
of these algorithms have been implemented in practice. De-
spite decades of active research, no published result achieves
continuing speedups to thousands, or even hundreds of cores.
This is an informal testimony to the hardness of parallelizing
the MCM problem in practice.

In this paper, we have developed a distributed-memory
MCM algorithm that employs breadth-first searches (BFS)
to discover augmenting paths (paths in the graph that alter-
nate between matched and unmatched edges with unmatched
vertices as endpoints) from multiple unmatched vertices, and
using these augmenting paths to increase the cardinality of
the matching. This algorithm, called the multi-source BFS or
MS-BFS, exposes more parallelism than its competitors and
has been shown to be highly efficient in terms of runtime
on shared-memory multiprocessors [7]. However, similar to
other augmenting-path based MCM algorithms, the compu-
tational load of the MS-BFS algorithm is highly dynamic.
The number of active vertices, i.e. the size of the frontier
during augmenting path searches, changes dramatically as the
number of unmatched vertices decreases during execution,
posing a significant challenge to harnessing the parallelism
available. We use sparse vectors to represent the frontier sets,
hence ensuring work efficiency during this dynamic execution.
We represent the input bipartite graph by a sparse matrix
and decompose the MS-BFS algorithm into matrix algebraic
modules. These modules are implemented using a handful set
of bulk-synchronous matrix operations, and a sparse matrix-
vector multiplication (SpMV) is at the heart of this matrix
algebraic formulation. For efficient execution of lighter weight
steps of the algorithm, which do not have enough bulk-
synchronous parallelism to exploit, we revert to asynchronous
remote memory access (RMA) operations. These modifica-
tions result in a highly-parallel MCM algorithm that scales up
to thousands of cores on a modern supercomputer.

Our main contributions in this paper are as follows:
• We present a highly-parallel algorithm for MCM on

distributed-memory system using matrix algebra.



• We present a step-by-step mapping between graph kernels
used in traditional MCM algorithm and our matrix-algebraic
modules, and provide a rigorous analysis of computation and
communication complexity of the parallel algorithm.

• We provide a hybrid OpenMP-MPI implementation of the
MCM algorithm that attains up to 18x speedup on real
matrices when we go from 24 cores to 2048 cores of a Cray
XC30 supercomputer. On synthetic graphs, our algorithm
can compute MCM in graphs with 32 billion edges and
scales up to 12,000 cores.

II. PRELIMINARIES

Given a graph G=(V,E) on the set of vertices V and edges
E, a matching M is a subset of edges such that at most one
edge in M is incident on each vertex in V . The number of
edges in M is called the cardinality |M | of the matching.
Given a matching M in G, an edge is matched if it belongs to
M , and unmatched otherwise. Similarly, a vertex is matched if
it is an endpoint of a matched edge, and unmatched otherwise.
If an edge (u, v) is matched, we call u and v mates of each
other. A matching M is maximal if there is no other matching
M ′ that properly contains M . M is a maximum cardinality
matching (MCM) if |M |≥|M ′| for every matching M ′. The
approximation ratio of a maximal matching is the ratio of its
cardinality to the cardinality of an MCM of the graph, which
is always greater than or equal to 1/2.

An M -alternating path in G with respect to a matching M
is a path whose edges are alternately matched and unmatched.
An M -augmenting path is an M -alternating path which begins
and ends with unmatched vertices. By exchanging the matched
and unmatched edges on an M -augmenting path P , we can
increase the cardinality of M by one (called the symmetric
difference of M and P , M⊕P=(M\P )∪(P\M)). Given a
set of vertex-disjoint M -augmenting paths P, M ′=M⊕P is a
matching with cardinality |M |+|P|.

In this paper, we represent a bipartite graph G = (R,C,E)
by an n1 × n2 binary sparse matrix A = {aij} with m
nonzeros where the vertex sets R and C correspond to rows
and columns respectively, and aij is nonzero when an edge
joins the ith vertex in R with the jth vertex in C. In this
context, R and C are called “row vertices” and “column
vertices”, respectively. Note that A is not the adjacency matrix
of G=(R,C,E) since it can be unsymmetric, rectangular
(when n1 6=n2), and might have nonzero entries in the diagonal
when there is an edge between ith row and ith column
vertices. In this paper, we will occasionally drop the adjectives
“bipartite” and “cardinality” when describing our methods.

A. Algorithmic variants for cardinality matching

MCM algorithms can be broadly categorized into (a) those
based on augmenting paths and (b) those based on the push-
relabel method [8], [9]. This paper primarily focuses on the
augmenting-path based algorithms. An augmenting-path based
matching algorithm runs in several phases, each of which
searches for augmenting paths in the graph with respect to
the current matching M and augments M by the augmenting

paths. The algorithm finds a maximum matching M when
there is no M -augmenting path in the graph [10].

Augmenting path searching in a bipartite graph is more
restricted than traditional graph searches because (a) searching
begins and ends on unmatched vertices, (b) the paths alternate
between matched and unmatched edges, and (c) vertices can
be removed from future searches based on augmenting path
discoveries. The search for augmenting paths can be performed
form one unmatched vertex (Single Source or SS algorithms)
or from all unmatched vertices simultaneously (Multi Source
or MS algorithms). The search can be performed by using
the alternating BFS, alternating depth-first search (DFS), or
a combination of both BFS and DFS (the Hopcroft-Karp
algorithm [11]). The Hopcroft-Karp algorithm has the best
asymptotic complexity of O(m

√
n) whereas all other algo-

rithms take O(mn) time. However, specialized multi-source
DFS (the Pothen-Fan algorithm [12]) and multi-source BFS
(MS-BFS) algorithms are shown to outperform the Hopcroft-
Karp algorithm on most practical graphs [13], [14] despite the
latter’s superior asymptotic complexity.

Previous work has demonstrated that an MCM can be
computed more quickly if we initialize an MCM algorithm by
a maximal matching with high approximation ratio [13], [15].
Maximal matching algorithms usually come in three flavors:
(a) greedy, (b) Karp-Sipser [16], and (c) dynamic mindegree.
All three algorithms take O(m) time, and they differ from
one another based on the processing order of unmatched
vertices. Even though sequential Karp-Sipser achieves higher
approximation ratio than greedy and dynamic mindegree on
most practical graphs [13], [15], we demonstrate that it is too
expensive to maintain the dynamic order of vertices needed by
Karp-Sipser on distributed memory. Section VI-A discusses
the impact of maximal matching algorithm on distributed-
memory MCM algorithms.

B. Previous work on parallel cardinality matching

Recents efforts in parallel matching algorithms primarily
focused on shared-memory. Shared-memory implementations
of Pothen-Fan, push-relabel, and MS-BFS demonstrate good
scaling on multithreaded multiprocessors [8], [14], [17] and on
GPU [18]. A recently developed MS-BFS-Graft algorithm [7]
that employs a tree-grafting method eliminating most of the
redundant edge traversals is shown to be one of best perform-
ers on modern multicore and manycore systems.

We are aware of only three results on distributed-memory
cardinality matching algorithms, with only one of them solving
the MCM problem. Langguth et al. [19] developed a dis-
tributed memory push relabel algorithm for MCM. However,
their algorithm did not scale beyond 64 processors because of
the difficulty in parallelizing “push” and “relabel” operations
needed by the algorithm. Patwary et al. [20] implemented
a parallel Karp-Sipser algorithm (in a general graph) on a
distributed memory machine using an edge partitioning of the
graph. On some real graphs, their algorithm achieved up to
38× speedups on 64 processors, whereas on other graphs their
algorithm did not scale at all. Finally, in a recent work [21],



Algorithm 1 MS-BFS algorithm. Input: A bipartite graph
G(R,C,E), an initial matching M . Output: A maximum
cardinality matching M .

1: procedure MS-BFS(G(R,C,E), M )
2: repeat . a phase of the algorithm
3: fc ← unmatched vertices in C . Initial column frontier
4: P← φ . Set of vertex-disjoint augmenting paths
5: while fc 6= φ do . an iteration in the current phase
6: discover unvisited neighbors fr from fc
7: add newly discovered augmenting paths into P
8: create next frontier fc from the mates of matched

vertices in fr
9: M ←M ⊕ P . augment matching by augmenting paths

10: until an augmenting path is discovered in the current phase

we implemented three variants of maximal matching algorithm
using matrix algebra with good scaling on up to tens of
thousands of processors.

III. MCM ALGORITHM USING MATRIX ALGEBRA

A. Selecting an algorithm exposing massive parallelism

A matching algorithm that could scale to thousands of
cores must expose massive parallelism and light-weight inter-
processor communication. Since single-source algorithms pro-
cess one unmatched vertex at a time, they do not qualify
for massive parallelization. Algorithms that rely on DFS
such as Pothen-Fan and Hopcroft-Karp bear less potential on
higher concurrency because these algorithms employ coarse-
grained parallelism, and DFS is difficult to parallelize [22].
By contrast, MS-BFS exposes massive fine-grained paralleliza-
tion and structured bulk-synchronous communication patterns,
which are essential to attain high performance on distributed-
memory systems. Furthermore, the ability to map BFS to
matrix-algebraic functions [23] makes MS-BFS even more
attractive on higher concurrency. Hence, we chose MS-BFS
for distributed-memory parallelization.

Algorithm 1 describe a high-level skeleton of a level-
synchronous MS-BFS algorithm. The repeat-until block de-
fines a phase of the algorithm where it searches for a
set of vertex-disjoint augmenting paths from all unmatched
vertices in C. Each phase is further divided into several
level-synchronous iterations defined by the while loop in
Algorithm 1. Each iteration starts with a column frontier fc ,
discovers unvisited neighbors fr (called row frontier) from fc ,
saves new augmenting paths (if any), and creates the next
frontier fc from the mates of matched vertices in fr . At the
end of a phase, the algorithm augments the current matching
by the newly discovered augmenting paths. If no augmenting
path is found in the latest phase, the algorithm returns with a
maximum matching.

B. Decomposing the MS-BFS algorithm

We decompose each iteration of Algorithm 1 into small
modules and map them to matrix-algebraic operations. The
leftmost column in Figure 1 shows detailed steps of a single it-
eration of Algorithm 1. Considering an initial matching shown

in the bipartite graph in Figure 2, the middle two columns
in Figure 1 illustrate the graph and vector representations of
row and column vertices in the first iteration of Algorithm 1.
The rightmost column in Figure 1 shows the matrix-algebraic
functions whose details are described in Table I. At first we
discuss the matrix algebraic notations, followed by the detail
description of the algorithmic steps in terms of matrix and
vector operations.

Representing vertex sets via vectors. We use either a
dense or a sparse vector to represent a set of vertices. The
difference between these two formats is that the latter does not
explicitly store the nonzero entries. Given a sparse vector x,
nnz (x) denotes the number of nonzeros and len(x) denotes
the number of both zero and nonzero entries in x. We use
subscripts r and c to denote vectors of row and column
vertices, respectively.

The MS-BFS algorithm keeps track of both parent and root
of each vertex in the current row and column frontiers. Hence,
we represent each vertex by a (parent, root) pair and denote
it by VERTEX data structure. We create a vertex with parent
p and root r by calling VERTEX(p, r ). For a sparse vector x
of VERTEX objects, PARENT(x ) and ROOT(x ) return parents
and roots of all vertices in x. In the first iteration of a phase,
parent and root of a vertex are set to itself. While the parent
of a vertex is updated in every iteration, roots are simply
passed from parents to children. In our example in Figure 1,
the iteration starts with all unmatched column vertices, i.e.,
the initial column frontier is fc ={c1, c2, c5}. In vector terms,
fc is stored in a sparse vector of length five with nonzeros in
1st, 2nd and 5th locations, i.e., fc =[(1, 1), (2, 2),−,−, (5, 5)],
where “−” denotes a zero entry in the sparse vector. We
store the mates of row and columns vertices in two dense
vectors mater and matec . If the ith row vertex is matched
to the jth column vertex, then mater [i]=j and matec [j]=i
(-1 denotes unmatched vertices). A dense vector πr stores the
parents of visited row vertices in the current phase (-1 denotes
unvisited vertices). Another dense vector pathc stores the start
column vertices (as indices) and end row vertices (as values)
of augmenting paths, i.e., pathc[i]=j denotes an augmenting
path from the ith column vertex to the jth row vertex.

Neighborhood exploration by SpMV (Step 1). We explore
vertices from one side of a bipartite graph to the other side
by using SpMV over a semiring. For the purposes of this
work, a semiring is defined over (potentially separate) sets
of ‘scalars’, and has its two operations ‘multiplication’ and
‘addition’ redefined. We refer to a semiring by listing its
scaling operations, such as the (multiply, add) semiring. The
usual semiring multiply for BFS is select2nd, which returns
the second value it is passed. The BFS semiring is defined
over two sets: the matrix elements are from the set of binary
numbers whereas the vector elements are from the set of
integers. This usage of a semiring is more general than the
definition employed in mathematics and it is studied under
the name of “heterogenous algebras” [24].

Since the frontier stores (parent, root) pairs, our semiring
‘addition’ operates either on parents or roots of a pair of
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Fig. 1: The leftmost column decomposes an iteration of the MS-BFS algorithm, and the rightmost column maps each step to a
matrix-algebraic function. Considering an initial matching shown in Figure 2, each row of the 2nd and 3rd columns illustrates
the graph and vector representations of row and column vertices at the end of the graph/matrix operation specific to that row.
In all steps except Step 5, the output is either a subset of row or column vertices where matched and unmatched vertices
are shown in filled and empty circles, respectively. In the vector representation in the 3rd column, a nonzero entry in the ith
location denotes the presence of ith row/column vertex and the value is (parent, root) pair of the corresponding vertex. Subset
of row vertices are marked in dark shade. In Step 5, we mark the augmenting paths by a dense vector pathc whose indices
are roots (start vertices) and values are unmatched leaves (end vertices) of augmenting paths.

TABLE I: Basic functions needed for the cardinality matching algorithm.

Function Arguments Returns Example Serial Communication(x: sparse, y:dense, q: sparse) Complexity

IND x: a sparse vector local indices of x = [3, 0, 2, 2, 0]
O(nnz (x))

None
nonzero entries of x IND(x) = [1, 3, 4]

SELECT

x: a sparse vector z ← an empty sparse vector x = [3, 0, 2, 2, 0]
y: a dense vector for i ∈ IND(x) y=[1, -1, -1, 2, -1] O(nnz (x)) None
expr : logical expr. on y if (expr(y[i])) then SELECT(x, y = -1) = [0, 0, 2, 0, 0]
assume size(x) = size(y) z[i]← x[i]

SET
x: a sparse vector for i ∈ INDEX(x) x=[3, 0, 2, 2, 0], y=[1, -1, 1, 2, -1] O(nnz (y)) None
y: a dense vector y[i]← x[i] SET(y, x)=[3, -1, 2, 2, -1]

INVERT
x: a sparse vector z ← an empty sparse vector x=[3, 0, 2, 2, 0]
assume max(x) ≤ len(x) for i ∈ IND(x) INVERT(x)=[0, 4, 1, 0, 0] O(nnz (x)) AllToAll

if (z[x[i]] 6= 0) then z[x[i]]← i

PRUNE
x: a sparse vector z ← an empty sparse vector x=[0, 0, 5, 0, 2] O(sort(ψ) + µ logψ)
q: a sparse vector for i ∈ INDEX(x) q=[2, 0, 0, 4, 1] where µ ≤ ψ, AllGather

if x[i] /∈ q then z[i]← x[i] PRUNE(x, q)=[0, 0, 5, 0, 0] ψ=nnz (x), µ=nnz (q)

SPMV
A: a sparse matrix ∑

k∈IND(x)

nnz (A(:, k))
AllGather

x: a sparse vector returns A · x see Fig. 2 (row/column
SR: a semiring process grid)

vertices. In our example in Fig. 1, we used ‘minParent’ as
‘addition’ operation, which selects the value with the minimum
parent index. Fig. 2 shows the execution of the SpMV A · fc
over the (select2nd, minParent) semiring. The (select2nd,
minParent) semiring can be replaced by (select2nd, minRoot)
or (select2nd, randRoot) semirings, which retain value with the

minimum or random roots, respectively. (select2nd, randRoot)
semiring is useful to randomly distribute vertices among
alternating trees, ensuring better balance of tree sizes.

Selecting subset of vertices (Steps 2, 3, 4). Steps 2, 3, 4
in Fig. 1 select subset of vertices from fr based on the status
(e.g, visited or matched) of the vertices, which is performed
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Fig. 2: Traversing a bipartite graph G(R,C,E) via SpMV.
The bipartite graph with five row and five column vertices is
shown in the left. Matched and unmatched vertices are shown
in filled and empty circles, respectively. Thin lines represent
unmatched edges and thick lines represent matched edges. The
binary matrix A represents the bipartite graph where an “×”
denotes an edge in G. fc represents the set of unmatched
column vertices whose value denotes the (parent, root) pairs.
The sparse matrix-vector multiplication A · fc over the (se-
lect2nd, minParent) semiring first selects columns that have
nonzeros in fc (shown in gray) and then in each row, retains
the value with the minimum parent from the selected columns.
The indices of the result vector fr denote row vertices explored
from fc and the value fr [i] denotes its parent and root. Image
modified from our prior work [21].

by the SELECT operation in Table I. Given a sparse vector x,
a dense vector y and a logical expression expr , the function
SELECT(x, y, expr) selects indices I of y where expr(y) is
true and returns values of the selected index. As shown in the
pseudocode in Table I, SELECT only iterates on the sparse
vector, hence the complexity O(nnz (x)).

Inverted index (Steps 5, 7). At the end of Step 4, if the
algorithm discovers some unmatched vertices in fr , it saves the
newly discovered augmenting path in the pathc dense vector.
This step is performed by storing the newly unmatched row
vertices in a sparse vector ufr . An augmenting path from the
column vertex ROOT(ufr [i]) to the ith row vertex is discovered
when ufr [i] 6= 0. Since we keep track of augmenting paths
in pathc that is indexed by the roots, we compute an inverted
index on ufr , where the roots become indices in pathc and the
nonzero indices of ufr become the values in the corresponding
locations. If more than one augmenting path is discovered
starting from the same root, we keep only one of them. The
same operation is used in Step 7 to go from matched row
vertices to their mates.

The inverted index is computed by the INVERT operation
in Table I. Given a sparse vector x, the INVERT function
returns the inverted index by swapping the indices and values
of nonzero entries in x and stores the results in a new sparse
vector z. When the nonzero values of x are (parent, root)
pairs, we specify whether parents or roots are to be swapped
with the indices. If x has repeated nonzero values, only one

of them is used as index in z (we keep the first index). The
serial complexity of this operation is O(nnz (x)).

Prune vertices in trees yielding augmenting paths (Step
6). To avoid unnecessary work in expanding a tree that has
already discovered an augmenting path, we prune vertices
belonging to augmenting-path-yielding trees from the next
frontier. If fr and ufr be the subsets of matched and unmatched
vertices in the current row frontier, we remove vertices from
fr whose roots are present in the roots of ufr . This step
is performed by the PRUNE operation from Table I. Let
ψ = nnz (fr ) and µ = nnz (ufr ). Since the roots of fr and
ufr are not sorted, the serial complexity of this operation is

Tprune = min
(
sort(ψ) + µ logψ, sort(µ) + ψ logµ

)
.

Construct next column frontier (Step 7). In the last step
of an iteration, the algorithm constructs the column frontier fc
for the next iteration from the mates of pruned row frontier
fr . The step can be performed by setting the parents of fr to
their mates and calling INVERT(fr ) with parents (i.e., mates)
of fr as the indices of the new frontier.

C. The algorithm

We describe the complete matrix-based MCM algorithm in
MCM-MATCH function in Algorithm 2. We pass the graph in
its sparse matrix representation and initial matchings as two
dense vectors mater and matec . The algorithm returns the
maximum cardinality matching by updating mater and matec .
At the beginning of each phase, MCM-MATCH initializes
the parent and augmenting path vectors. For each unmatched
column vertex ci, the column frontier fc has a nonzero entry
in the ith location with both the parent and root pointing to
the vertex itself. Algorithm 2 then iteratively performs seven
steps discussed in detail in the previous subsection.

In every iteration of Algorithm 2, a row vertex ri in fr is
uniquely associated to a parent cj in fc , and cj is associated
with its unique mate. Hence, each phase of MCM-MATCH
maintains a unique alternating path from a row vertex in fr
to its root following the chain of parents and mates. Since
roots are inherited from parents, all alternating trees created
in a phase are vertex disjoint. The set of augmenting paths
identified in a phase is vertex disjoint as well because we
keep at most one augment path in each alternating tree.

The AUGMENT function in Algorithm 3 describes the
process of augmenting a matching by a set of vertex disjoint
augmenting paths using our matrix-algebraic notations. We
start with a sparse vector vc created from pathc by removing
entries with -1 and start augmenting all paths simultaneously
from their end vertices. Every iteration of the while loop in
line 3 of Algorithm 2 matches a pair of vertices from each
augmenting path by employing two INVERT operations: the
first call is used to jump from row vertices to their parents
and the second call is used to jump from parents to the mates
of parents. Let h be the longest augmenting path discovered in
a phase of MCM-MATCH . Then AUGMENT requires O(h/2)
level-synchronous iterations to augment matching by all paths.



Algorithm 2 Maximum cardinality matching algorithm based on matrix algebra. Inputs: A binary n1 × n2 sparse matrix A
denoting a bipartite graph G(R,C,E) where |R|=n1, |C|=n2, and |E|=nnz (A)=m. Dense vectors mater , and matec store
the initial mates of row and column vertices (-1 for unmatched vertices). Output: Updated mater and matec with an MCM.

1: procedure MCM-DIST(A, matec , mater )
2: repeat . a phase of the algorithm
3: πr ← -1 . Initialize a dense vector storing the parents of row vertices visited in this phase
4: pathc ← -1 . Initialize a dense vector storing the end points of augmenting paths
5: fc ← an empty sparse vector of size n of type VERTEX
6: for i ∈ IND(matec) do . Initial column frontier from unmatched column vertices
7: if matec[i] = -1 then
8: fc [i]← VERTEX(i, i) . parent and root are set to itself
9: while fc 6= φ do . an iteration in the current phase

10: . Step 1: Explore neighbors of column frontier (one step of BFS)
11: fr ← SPMV(A, fc , SR=(select2nd, minParent))
12: . Step 2, 3, 4: Select unvisited, matched, and unmatched row vertices
13: fr ← SELECT(fr , πr = -1) . Keep unvisited rows
14: πr ← SET(πr, PARENT(fr )) . Set parents of newly visited rows
15: ufr ← SELECT(fr ,mater = -1) . Unmatched row vertices in the row frontier
16: fr ← SELECT(fr ,mater 6= -1) . Keep matched row vertices in the row frontier
17: if ufr 6= φ then . At least one augmenting path is found
18: . Step 5: Store endpoints of newly discovered augmenting paths
19: tc ← INVERT(ROOT(ufr )) . Roots and leaves become indices and values, respectively
20: pathc ← SET(pathc , tc) . Save end vertices of augmenting paths
21: . Step 6: Prune vertices in trees yielding augmenting paths
22: fr ← PRUNE(fr ,ROOT(ufr )) . Remove vertices from fr whose roots are in the roots of ufr
23: . Step 7: Construct next frontier
24: SET(PARENT(fr ),mater) . Parents are set to mates
25: fc ← INVERT(fr ) . Use parent of fr as index of fc
26: . Step 8: Augment matching by all augmenting paths discovered in this phase
27: AUGMENT(pathc, πr , mater , matec)
28: until an augmenting path is discovered in the current phase

IV. DISTRIBUTED MEMORY ALGORITHM

A. Data distribution and storage

We use the CombBLAS framework [25] which distributes
its sparse matrices on a 2D pr × pc processor grid. Processor
P (i, j) stores the submatrix Aij of dimensions (m/pr) ×
(n/pc) in its local memory. The CombBLAS uses the doubly
compressed sparse columns (DCSC) format to store its local
submatrices for scalability, and uses a vector of {index,
value} pairs for storing sparse vectors. To balance load across
processors, we randomly permute the input matrix A before
running the matching algorithms.

Vectors are also distributed on the same 2D processor grid.
For a distributed vector v, the syntax vij denotes the local n/p
length piece of the vector owned by the P (i, j)th processor.
The syntax vi denotes the hypothetical n/pr or n/pc length
piece of the vector collectively owned by all the processors
along the ith processor row P (i, :) or column P (:, i).

B. Analysis of the distributed algorithm

We measure communication by the number of words moved
(W ) and the number of messages sent (S). The cost of
communicating a length m message is α+βm where α is the
latency and β is the inverse bandwidth, both defined relative to
the cost of a single arithmetic operation. Hence, an algorithm
that performs F arithmetic operations, sends S messages, and
moves W words takes T = F + αS + βW time.

Algorithm 3 Augment a matching by a set of vertex disjoint
augmenting paths. Inputs: pathc stores the end vertices of
augmenting paths, and πr stores the parents of row vertices.
mater , and matec store the mates of row and column vertices,
respectively. All input vectors are dense where -1 represents
missing values. Output: Updated mater and matec .

1: procedure AUGMENT( pathc, πr , mater , matec)
2: vc ← sparse vector from pathc by removing entries with -1
3: while vc 6= φ do
4: vr ← INVERT(vc)
5: vr ← SET(vr, πr) . Set values with parents
6: vc ← INVERT(vr)
7: v′c ← SET(vc,matec) . Set values with mates
8: matec ← SET(matec, vc) . Update mates
9: mater ← SET(mater, vr)

10: vc ← v′c

We previously analyzed [21] the complexity of SpMV and
INVERT operations because they are also building blocks
of parallel maximal matching algorithms. Here, we expand
beyond that per-iteration analysis. Since the load is extremely
dynamic across iterations, we analyze the aggregate cost over
all iterations in a phase. For ease of analysis, we assume
that nonzeros are i.i.d. distributed in matrices and vectors. We
also assume a square processor grid pc=pr=

√
p. Number of

iterations is denoted by |iters|.

We leverage the 2D SpMV algorithms implemented in
CombBLAS; both for sparse and dense vectors. 2D SpMV



algorithms has two communication phases [26]: (1) “expand”,
for which CombBLAS uses the allgather primitive, and (2)
“fold”, for which CombBLAS uses the personalized all-to-all
primitive [27]. The parallel SpMV algorithm is work efficient,
hence its total work is the same as its serial complexity. For
graphs without good separators, the communication volume in
the fold phase can be as high as the arithmetic cost. Each edge
is traversed at most once within a phase in most cardinality
matching algorithms, including ours. Hence the overall per-
process cost of SpMV within a phase is at most the cost of
one full BFS [23]:

TSPMV = O
(m
p

+ β
(m
p

+
n
√
p

)
+ |iters|α√p

)
INVERT is called twice at each iteration. Once on ufr, the

set of unmatched vertices in the current frontier, and once on
fr, the set of matched vertices in the current frontier. Since
the second call populates the next frontier, the total number of
nonzeros inverted is exactly the same as the sum of the frontier
sizes over all iterations, which is O(n). Hence the per-process
cost of INVERT within a phase is

TINVERT = O
(n
p
+ β

n

p
+ |iters|αp

)
using personalized all-to-all. This makes INVERT’s latency
cost higher by a factor of

√
p, hence making it the potential

bottleneck in a strong scaling regime where the latency term
dominates. In the weak scaling regime, by contrast, SPMV is
likely to be the bottleneck.

PRUNE gathers roots of unmatched vertices ufr on all pro-
cessors in its communication step. As before, let ψ=nnz (fr )
and µ=nnz (ufr ). Assuming that the matched vertices in
the current row vertices fr are uniformly distributed across
processors, per processor computation for PRUNE is

min
(
sort(

ψ

p
) + µ log

ψ

p
, sort(µ) +

ψ

p
logµ

)
.

The communication cost to gather ufr is αp+βµ per processor,
using the ring algorithm [28]. However, a vertex can appear at
most once in ufr in a phase because once an unmatched vertex
is found, it either becomes an end vertex of an augmenting path
or gets pruned if another augmenting path is discovered in the
same tree. Hence,

∑
nnz (ufr ) summed over all iterations in a

phase is bounded by O(n). In practice, it is much smaller than
n because the vertices matched by initial maximal matching
and in previous phases of the MCM algorithm do not appear
in ufr in a phase. Therefore, the bandwidth cost for PRUNE is
usually insignificant to that of SpMV. Furthermore, in contrast
to INVERT, pruning is only required in a small fraction of all
iterations where an augmenting path is discovered. Hence, total
latency cost of PRUNE is much smaller than INVERT.

We now discuss the communication cost of augmenting
a matching by k vertex-disjoint augmenting paths described
in Algorithm 3. We call this algorithm level-parallel since
the augmentation proceeds level by level starting from the
bottom of the paths. For simplicity, we assume that k paths are
uniformly distributed across p processors, i.e., each processor

Algorithm 4 Augment a matching by a set of vertex disjoint
augmenting paths in a path-parallel fashion.

1: procedure AUGMENT PATH( pathc, parentr , mater , matec)
2: for v ∈ pathc in parallel do
3: while v 6= −1 do
4: u← parentr[v] . MPI GET
5: v′ ← matec[u] . MPI GET
6: matec[u]← v . MPI PUT
7: mater[v]← u . MPI PUT
8: v ← v′

owns k/p vertices in each level of the paths. Let h be
the length of the longest augmenting path. Each iteration of
Algorithm 3 needs two INVERT operations, each of which
requires two personalized all-to-all to communicate the indices
and values of the sparse vector, and another personalized all-
to-all to communicate the amount of data to be sent to different
processors. Hence, the communication cost of Algorithm 3 is
h(6αp+ 4β k

p + 2βp) per processor.
When k is small, which is often the case in later phases of

the MCM algorithm, the latency term dominates the runtime of
AUGMENT, hindering scaling to higher concurrencies. Hence,
we developed another variant of augmentation that processes
each augmenting path independently by using MPI RMA
operations. This “path-parallel” augmentation is described in
Algorithm 4 where each processor augments k/p augment-
ing paths asynchronously by directly manipulating the mate
vectors in remote processors. Each iteration of the while
loop in Algorithm 4 uses two MPI GET and MPI PUT
operations. However, lines 5 and 6 can be merged into a
single MPI FETCH AND OP requiring a total 3 RMA calls
per processor per iteration. Since these RMA calls are only
communicating the mate/parent information from dense vec-
tors, the communication cost per processor per iteration is
3(α+ β). Thus, the total communication cost of Algorithm 4
is k

p (3hα+ 3hβ) per processor. Comparing the latency terms
of Algorithm 3 and Algorithm 4, the path parallel augmen-
tation performs better when the number of augmenting paths
k < 2p2. Therefore, we use this criterion to automatically
switch between these two variants of augmentations and were
able to reduce the augmentation time significantly.

V. EXPERIMENTAL SETUP

A. Platform

We evaluate the performance of parallel MCM algorithm on
Edison, a Cray XC30 supercomputer at NERSC. In Edison,
nodes are interconnected with the Cray Aries network using
a Dragonfly topology. Each compute node is equipped with
64 GB RAM and two 12-core 2.4 GHz Intel Ivy Bridge
processors, each with 30 MB L3 cache. We used Cray’s
MPI implementation, which is based on MPICH2. We used
OpenMP for intra-node multithreading and compiled the code
with gcc 5.2.0 with -O2 -fopenmp flags. To ensure better
memory affinity to NUMA nodes of Edison, we used -cc
numa_node option when submitting jobs. In our experi-
ments, we only used square process grids because rectangular
grids are not supported in CombBLAS [25]. When p cores



TABLE II: Real and synthetic problems for evaluating the maximum matching algorithm. For symmetric matrices, we store
edges in both directions. Hence we report the number of nonzeros of symmetric problems to be about twice as large as the
number of edges reported in the Florida sparse matrix collection [29].

Class Graph #Rows (n1) #Columns (n2) nnz Description
(×106) (×106) (×106)

IMDB 0.43 0.43 3.78 IMDB movie/actor network
amazon-2008 0.74 0.74 5.16 Amazon book similarity network
GL7d19 1.91 1.96 37.32 combinatorial problem
wikipedia-20070206 3.56 3.56 45.03 Wikipedia page links

Unsymmetric circuit5M 5.56 5.56 59.52 Large circuit from Freescale Semiconductor
ljournal-2008 5.36 5.36 79.02 LiveJournal social network
cage15 5.15 5.15 99.20 3D engine fan
HV15R 2.02 2.02 283.1 DNA electrophoresis, 15 monomers in polymer

hugetrace-00020 16.00 16.00 96.00 Frames from 2D Dynamic Simulations
road usa 23.94 23.94 115.42 USA street networks
dielFilterV3real 1.10 1.10 178.62 High-order vector finite element method in EM

Symmetric delaunay n24 16.77 16.77 201.33 Delaunay triangulations of random points
nlpkkt200 16.24 16.24 896.40 Symmetric indefinite KKT matrix

ER-30 1073.7 1073.7 32044 Erdős-Rényi random graphs
Random G500-30 1073.7 1073.7 32044 Graph 500 graphs [30]

SSCA-30 1073.7 1073.7 17085 Matrices generated by (SSCA#2) benchmark [31]

are allocated for an experiment, we create a
√
p/t ×

√
p/t

process grid where t is the number of threads per process.
Unless otherwise stated, all of our experiments used 12 threads
per MPI process and each MPI process was placed on a
socket in a node of Edison. In our hybrid OpenMP-MPI
implementation, all MPI processes perform local computation
followed by synchronized communication rounds. Local com-
putation in every matrix-algebraic kernel described in Table I
is fully multithreaded using OpenMP. Only one thread in
every process makes MPI calls in the communication rounds
(that is MPI_THREAD_FUNNELED thread support is used in
MPI_Init_thread function call). The source code of the
distributed-memory MCM algorithm is publicly available as
part of Combinatorial BLAS library [32].

B. Input Graphs

Table II describes a set of real matrices from the University
of Florida sparse matrix collection [29] used in our experi-
ments. We selected the largest unsymmetric and symmetric
matrices that have at least several thousands of unmatched
vertices after computing a maximal matching. To test the
performance of our matching algorithm on larger matrices,
we used RMAT [33], the Recursive MATrix generator to
generate three different classes of synthetic matrices: (a) G500
matrices representing graphs with skewed degree distribu-
tions from Graph 500 benchmark [30], (b) SSCA matrices
from HPCS Scalable Synthetic Compact Applications graph
analysis (SSCA#2) benchmark [31], and (c) ER matrices
representing Erdős-Rényi random graphs with uniform degree
distributions. We use the following RMAT seed parameters
to generate these matrices: (a) a=.57, b=c=.19, and d=.05
for G500, (b) a=.6, and b=c=d=.4/3 for SSCA, and (c)
a=b=c=d=.25 for ER. A scale n synthetic matrix is 2n-by-
2n. On average, G500 and ER matrices have 32 nonzeros,
and SSCA matrices have 16 nonzeros per row and column.
For example, a scale-30 G500 matrix (G500-30) has about 1
billion rows, 1 billion columns, and 32 billion nonzeros. We
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Fig. 3: Effect of distributed-memory maximal matching algo-
rithms on the time to compute MCM on 1024 cores of Edison.

applied a random permutation to the input matrices to balance
the memory and the computational load.

VI. RESULTS

A. Selecting an initial maximal matching
The total runtime of an MCM algorithm often decreases

when it is initialized by a maximal matching with high
approximation ratio [13], [14], [15]. In our prior work [21],
we developed distributed-memory Karp-Sipser, dynamic min-
degree and greedy algorithms using a subset of the matrix-
algebraic primitives described in Table I. We observed that on
distributed memory, especially on high concurrency, the Karp-
Sipser algorithm that is usually the best performer on shared-
memory becomes much slower than greedy and dynamic
mindegree. In Fig. 3, we demonstrate the impact of distributed
maximal matching algorithms on MCM for four representative
graphs. On these four graphs, Karp-Sipser is always slower
than greedy and dynamic mindegree algorithms. However, the
better approximation ratio obtained by Karp-Sipser may offset
its slow runtime as can be seen for wikipedia. In fact,
wikipedia and cage15 are only two matrices in Table II
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Fig. 4: Strong scaling of MCM-DIST when computing maximum matching on real matrices on Edison. The left and right
subfigures show the scaling of relatively smaller and larger matrices, respectively. 12 threads are used on all concurrencies
except on 24 cores where each process on a 2× 2 grid employs 6 threads.
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Fig. 5: Runtime breakdown of MCM-DIST for four representative graphs using 12 threads per MPI process on Edison.
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Fig. 6: Strong scaling of MCM-DIST when computing maximum matching on three classes of randomly generated graphs
with five different scales on Edison.

where MCM algorithm initialized by Karp-Sipser runs the
fastest. Even for these matrices, dynamic mindegree performs
closely. Hence, in the rest of our experiments, we use only
dynamic mindegree to initialize our MCM algorithm.

B. Scalability of distributed-memory MCM algorithm

We show the strong scaling of our distributed-memory
MCM algorithm for 13 real matrices in Fig. 4. We show
speedups relative to the runtime of MCM-DIST on a single
node (24 cores) of Edison because we assume that the input
graphs are already distributed before invoking our matching
routine (discussed in Section VI-E). When we go from 24

cores to 972 cores (i.e., 40.5× increase in core count), the
average speedup achieved on all 13 real matrices is 9×
(min: 5× for amazon-2008, max 13× for delaunay_n24,
stdev: 2.1). In Fig. 4, we show the scalability of smaller
matrices (left) and larger matrices (right) separately. Com-
puting matching on large matrices scales better than smaller
matrices, as expected. For example, going from 24 cores to
2014 cores, our algorithm attains about 18× and 16× speedups
on delaunay_n24 and road_usa, respectively.

To better understand the performance of MCM-DIST and
identify its bottlenecks, we show the runtime breakdown for



four representative matrices in Fig. 5. On lower concurrencies,
SpMV dominates the runtime as it is the most computation-
heavy task of our algorithm. On higher concurrencies, other
synchronization-heavy operations, such as INVERT, become
significant. For examples, on road_usa, SpMV takes about
80% and 60% of total runtime of MCM-DIST on 48 cores
and 2014 cores, respectively. On smaller matrices such as
amazon-2008, INVERT becomes dominant more quickly as
the dropping work per process can not mask synchronization
costs, which can be seen in the rightmost plot in Fig. 5.

We use large synthetic matrices to demonstrate the scal-
ability of MCM-DIST on higher concurrency. Fig. 6 shows
the strong scaling of MCM-DIST when computing MCM
on ER, G500 and SSCA matrices on up to 12,288 cores of
Edison. Here, we observe that the total runtime of MCM-DIST
decrease by a factor of

√
t when we increase the core count by

a factor of t, which is reasonable considering the complexity of
MCM algorithms. However, similar to real matrices, MCM-
DIST stops scaling on relatively small core counts for smaller
matrices. For instance, scale 26 matrices do not scale beyond
4096 cores, whereas scale 30 matrices scale up to 12,288
cores. Recall that ER-30 and G500-30 represent graphs with
about 2 billion vertices and 32 billion edges. These graphs
require more than 600GB of memory (assuming 20 bytes per
edge) to store the graph, which exceeds the capacity of a single
node of most existing supercomputers. For these massive
graphs, distributed-memory algorithms are the only option to
compute MCM. Hence, our algorithm laid the foundation to
compute MCM on massive graphs on extreme scale.

C. Impact of intra-node multithreading

Thus far, we have always used 12 threads in each MPI
process and pinned each process to a socket of Edison. Using
1 thread instead of 12 increases the runtime of MCM-DIST
and diminishes its scalability as shown with two examples in
Fig. 7. Using the same number of cores, multithreading with
12 threads (Fig. 5) makes MCM-DIST at least twice as fast
as non-threaded flat MPI implementation on all concurren-
cies. Furthermore, non-threaded implementation stops scaling
earlier than the multithreaded implementation as can be seen
by comparing Fig. 5 and Fig. 7. The reason is that intra-node
multithreading reduces the size of MPI communicators, reduc-
ing the inter-process communication time and synchronization
overheads. The effect of multithreading is more significant
on smaller matrices such as amazon-2008 where the non-
threaded implementation does not scale beyond 200 cores.

D. Impact of pruning unnecessary vertices

Pruning vertices from trees that have already discovered
augmenting paths (line 22 of Algorithm 2) reduces the runtime
of MCM-DIST for most real matrices. Fig. 8 shows the per-
centage of runtime reduced when vertex pruning is employed
on 1024 cores of Edison. For all matrices except two, pruning
reduces the runtime from 10% to 65%. Pruning itself is not
an expensive step as can be seen in Fig. 5 because it needs
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Fig. 7: Breakdown of runtime when MCM is computed using
1 thread per MPI process on Edison.

to communicate information about the roots of trees that have
found augmenting paths in the current iteration.

E. Employing shared-memory algorithms on a distributed
graph

If a graph fits in a single node and computing a matching
is the sole objective, it makes more sense to use a shared-
memory algorithm to compute MCM because the state-of-
the-art shared-memory implementation [7] is usually faster
than our distributed-memory algorithm when the latter is
run on a single node. By contrast, if a graph is already
distributed, collecting it on a single node requires expensive
communication. The communication cost includes gathering
the distributed graph on a selected node and scattering the
computed MCM from the selected node to all nodes. Fig. 9
shows how the communication time spent in gathering and
scattering operations grows quickly with the increase of the
number of edges in a graph on 2048 cores of Edison. In this
toy example, 2048 MPI processes are run on 2048 cores, and
each process stores equal number of edges of a hypothetical
distributed graph. The graph is gathered on MPI rank 0, and
then row and column matching vectors are scattered from rank
0 to all MPI processes. In addition to the communication cost,
considerable preprocessing time is spent in populating local
data structures before the shared-memory MCM algorithm
is invoked. Therefore, collecting the distributed graph on a
single node is expensive and unscalable, especially when the
MCM is intended for another distributed application such as
a distributed-memory solver. For instance, nlpkkt200 has
about 900M nonzeros. Hence it would take about 20 seconds
to collect the graph on a node and scatter the mate vectors
according to Fig. 9. This communication overhead alone is
twice as long as running MCM in distributed memory via
MCM-DIST according to Fig. 4. Since MCM-DIST is targeted
primarily to the distributed applications, we do not compare its
performance with shared-memory MCM algorithms and only
show speedups relative to the single node (24 cores) runtime.

VII. CONCLUSION AND FUTURE WORK

Achieving speedups for the maximum-matching cardinality
problem on distributed-memory architectures have been a long
standing challenge. This is due to the extremely dynamic
nature of the computation, its long critical path, and the lack
of scalable parallel primitives. In this work, we showed that



-10% 

10% 

30% 

50% 

70% 

IM
D

B
 

am
az

on
 

G
L

7d
19

 

w
ik

ip
ed

ia
 

ci
rc

u
it

5M
 

lj
ou

rn
al

 

ca
ge

15
 

ro
ad

_u
sa

 

n
lp

kk
t2

00
 

h
u

ge
tr

ac
e 

de
la

u
n

ay
 

R
u

n
ti

m
e 

re
d

u
ct

io
n

 

Fig. 8: The change in runtime before and after vertex pruning
is employed on 1024 cores of Edison. For most graphs,
pruning reduces the total time to compute maximum matching.
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Fig. 9: The communication time spent in gathering and scat-
tering operations with the increase of the number of edges in
a graph on 2048 cores of Edison. 20 bytes are used to store
an edge, and 8 bytes are used to store the mate of a vertex.

matrix-algebraic primitives, together with moderate use of
one-sided communication primitives as needed, enabled our
algorithms to achieve speedups to thousands of processors.

While the speedups we achieved are sublinear, they sig-
nificantly improve over the current published state of the art.
Future work includes implementing the tree grafting technique
together with the bottom-up BFS in distributed memory and
utilizing PGAS languages for better expressing one-sided com-
munication. We also plan to develop faster, communication-
avoiding algorithms for the SpMV and INVERT primitives that
dominate the performance at large concurrencies.
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